
Typical DSP
architectures and features

SS 2010
HW/SW Codesign

Christian Plessl

extra materials

HW/SW Codesign 2010 Ch 2 - DSP extra

Classic DSP characteristics

•  explicit parallelism
–  Harvard architecture for concurrent data access
–  concurrent operations on data and addresses

•  optimized control flow and background processing
–  zero-overhead loops
–  DMA controllers

•  special addressing modes
–  distinction of address, data and modifier registers
–  versatile address computation for indirect addressing

•  specialized instructions
–  single-cycle hardware multiplier
–  multiply accumulate instruction (MAC)

2

HW/SW Codesign 2010 Ch 2 - DSP extra

Harvard architecture

3

general
purpose

processor core

program/data
memory bus

DSP processor
core

program
memory

data memory

data memory

bus

bus

bus

•  separate program and data
memories
•  operands also in memory
•  concurrent access to

•  instruction word
•  one or several data words

•  example:

•  unified external memory for
program and data
•  all operands in registers

MPYF3 *(AR0)++, *(AR1)++, R0

instruction
from

program
memory

store result
in data

register R0

from data
memory

(address in
address

register AR0)

from data
memory

(address in
address

register AR1)

HW/SW Codesign 2010 Ch 2 - DSP extra

Specialized addressing modes

•  many DSPs distinguish address registers from data registers
•  additional ALUs for address computations

–  useful for indirect addressing (register points to operand in memory)
ADDF3 *(AR0)++, R1, R1

–  operations on address registers in parallel with operations on data
registers, no extra cycles

–  behavior depends on instruction and contents of special purpose
registers (modifier registers)

•  typical address update functions
–  increment/decrement by 1 (AR0++, AR0--)
–  increment/decrement by constant specified in modifier register (AR0 +=

MR0, AR0 -= MR5)
–  circular addressing (AR0 += 1 if AR0 < upper limit, else AR0 = base

address), see example
–  bit-reverse addressing, see example
–  …

4

HW/SW Codesign 2010 Ch 2 - DSP extra

Circular addressing

•  goal: implementation of ring buffers in linear address space
–  implementation variants

  copy data with data access, or
  use circular addressing (don’t copy data, wrap pointers)

–  supported by addressing modes
  data access and move operations
  increment operators that wrap around at buffer boundaries

5

x[0] x[1]

x[2] x[3]

x[1] x[2]

x[3] x[0]

x[M-2]
x[M-1]

x[0]

x[M-3]

linear address
space

…

 current
sample

(address
register)

ring buffer of length 4

iteration i iteration i+1

latest input

latest input

HW/SW Codesign 2010 Ch 2 - DSP extra

Bit-reverse addressing

•  goal: accelerate FFT operation
•  very important DSP operation
•  transforms signals between time and frequency representations
•  compute intensive:

–  N-point DFT needs O(N^2) complex multiplications
–  FFT needs O(N*log2(N)) complex multiplications

6

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

1 1 0
1 1 1

0 0 0
1 0 0
0 1 0
1 1 0
0 0 1
1 0 1

0 1 1
1 1 1

= 0
= 7
= 2
= 6
= 1
= 5

= 3
= 7

mirror bits
(bit reverse)

8-point
Fast

Fourier
Transform

(FFT)

x0

x1

x2

x3

x4

x5

x6

x7

X0

X4

X2

X6

X1

X5

X3

X7

basic operation in many
DSP algorithms

other method to compute
addresses, add N/2 with
reverse carry arithmetic

0 0 0
1 0 0
1 0 0

+

1 0 0
0 1 0

+

1 0 0
1 1 0

+

1 0 0
0 0 1

+

= 0

= 4

= 2

= 6

= 1

reverse
carry

HW/SW Codesign 2010 Ch 2 - DSP extra

Zero-overhead loops

•  goal
–  reduce overhead for executing loops
–  general purpose processors

  initialize loop counter
  execute loop body
  check loop exit condition
  branch to loop start or exit loop

–  digital signal processors
  initialize loop counter
  execute loop body
  check loop exit condition
  branch to loop start or exit loop

7

LDI @a, AR0!
LDI 0.0, R1!
RPTS 99!
ADDF3 *(AR0)++, R1, R1!
…

TMS320C3x-like assembler

example: add first 100
values in array a and store

result in R1

RPTS N repeats next
instruction N-1 times

HW/SW Codesign 2010 Ch 2 - DSP extra 8

Putting it together: scalar product

sum = 0.0;!
for (i=0; i<N; i++)!
 sum = sum + a[i]*b[i];!

 LDI @a, AR0
 LDI @b, AR1
 LDF 0, R0!

!LDF 0, R1!
!RPTS N-1!
!MPYF3 *(AR0)++, *(AR1)++, R0!

|| !ADDF3 R0, R1, R1!
!ADDF3 R0, R1, R1

TMS320C3x assembler

MAC - instruction

zero-overhead loop

address arithmetic (auto increment)

data register

address register

exploit harvard
architecture, read two data

operands in one cycle

HW/SW Codesign 2010 Ch 2 - DSP extra

Further reading

•  Jennifer Eyre and Jeff Bier, “The Evolution of DSP Processors”,
BDTI Whitepaper

•  Phil Lapsley et al., “DSP Processor Fundamentals”, IEEE Press
•  Berkeley Design Technologies Website, http://www.bdti.com/

9

