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Classic DSP characteristics 

•  explicit parallelism 
–  Harvard architecture for concurrent data access 
–  concurrent operations on data and addresses 

•  optimized control flow and background processing 
–  zero-overhead loops 
–  DMA controllers 

•  special addressing modes 
–  distinction of address, data and modifier registers 
–  versatile address computation for indirect addressing  

•  specialized instructions 
–  single-cycle hardware multiplier 
–  multiply accumulate instruction (MAC) 
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Harvard architecture 
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•  separate program and data 
memories 
•  operands also in memory 
•  concurrent access to 

•  instruction word 
•  one or several data words 

•  example: 

•  unified external memory for 
program and data 
•  all operands in registers 
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Specialized  addressing modes 

•  many DSPs distinguish address registers from data registers 
•  additional ALUs for address computations 

–  useful for indirect addressing (register points to operand in memory) 
ADDF3  *(AR0)++, R1, R1 

–  operations on address registers in parallel with operations on data 
registers, no extra cycles 

–  behavior depends on instruction and contents of special purpose 
registers (modifier registers) 

•  typical address update functions 
–  increment/decrement by 1 (AR0++, AR0--) 
–  increment/decrement by constant specified in modifier register (AR0 += 

MR0, AR0 -= MR5) 
–  circular addressing (AR0 += 1 if AR0 < upper limit, else AR0 = base 

address), see example 
–  bit-reverse addressing, see example 
–  … 
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Circular addressing 

•  goal: implementation of ring buffers in linear address space 
–  implementation variants 

  copy data with data access, or 
  use circular addressing (don’t copy data, wrap pointers) 

–  supported by addressing modes 
  data access and move operations 
  increment operators that wrap around at buffer boundaries 
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Bit-reverse addressing 

•  goal: accelerate FFT operation 
•   very important DSP operation 
•   transforms signals between time and frequency representations 
•   compute intensive: 

–   N-point DFT needs O( N^2 ) complex multiplications 
–   FFT needs O( N*log2(N) ) complex multiplications  
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Zero-overhead loops 

•  goal 
–  reduce overhead for executing loops 
–  general purpose processors 

  initialize loop counter 
  execute loop body 
  check loop exit condition 
  branch to loop start or exit loop 

–  digital signal processors 
  initialize loop counter 
  execute loop body 
  check loop exit condition 
  branch to loop start or exit loop 
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LDI    @a, AR0!
LDI    0.0, R1!
RPTS   99!
ADDF3  *(AR0)++, R1, R1!
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Putting it together: scalar product 

sum = 0.0;!
for (i=0; i<N; i++)!
  sum = sum + a[i]*b[i];!

        LDI    @a, AR0 
        LDI    @b, AR1 
       LDF    0, R0!

!LDF    0, R1!
!RPTS   N-1!
!MPYF3  *(AR0)++, *(AR1)++, R0!

|| !ADDF3  R0, R1, R1!
!ADDF3  R0, R1, R1 

TMS320C3x assembler 
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Further reading 

•  Jennifer Eyre and Jeff Bier, “The Evolution of DSP Processors”, 
BDTI Whitepaper 

•  Phil Lapsley et al., “DSP Processor Fundamentals”, IEEE Press 
•  Berkeley Design Technologies Website, http://www.bdti.com/ 
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